

Advanced
Communication
and Control
Project

October 29, 2003 San Diego, CA

ACCP Project Objectives

- Design and Proof-of-Design demonstration of an integrated DER Communication and Control System capable of delivering
 - Seamless integration of DER units at Aggregation Level that also meet individual user's facility needs.
 - Indifferent to DER deployments (Residential, Commercial or Industrial facilities), DER units are capable of being operated as resource options for Electric and Gas Utilities.

Project Team

TEAM LEADER: Connected Energy

California

- SCE- demonstration site
- CAISO

New York

- Long Island Power Authority demonstration site
- NYISO
- NY State Energy Research Development Authority demonstration sites (2)

Other Participants

- Sandia National Laboratory- Information and SCADA security
- Mykotronx- Cryptography and Cypher modules
- Gas Technology Institute- AGA Security Standard

Current Situation

Project Deliverables

different vendors

Copyright Connected Energy Corp. 2003

Schedule and Budget Overview

- Phase 1 is 6 months. Major tasks:
 - Document Stakeholder requirements as Use-Cases and define Project Security Policy
 - Design and Implementation of Protocol Framework and Software (enerVIEW) extensions
 - Provision Proof-of-Design Test Sites (4)
 - Test and Validation
 - Document Report and Phase 2 Proposal
- Phase 1 Budget:

Total approved: \$940,978

DOE award: \$299,458

How will this Project Contribute to DOE's Vision?

- Demonstrate a practical Protocol and Software design aggregating the distributed management of DERs (load and generation).
- The design will expose real-world technical, security and pragmatic issues involved in achieving DOE's vision.
- The system will serve as the underpinning for future energy business software.
- Proof-of-Design demonstration allows meaningful comparison of alternative approaches:
 - SCADA based traditional Control Systems approach.
 - IEC 61850 UCA a comprehensive standard prescribing an "Architecture" including Object Models, Services and Protocols.
 - In-house developed systems at ESCos and Aggregators.

Protocol Attributes

- Purpose is to facilitate and foster DER interoperability
- Deliver DER "Object Model" as payload.
- Protocol need to monitor the monitoring system.
- Protocol need to support multi-organizational DER aggregation.
- Protocol need to enforce secured aggregation.
- Protocol elements:
 - "Object Model" is an abstraction of the DER device
 - Handshake, transfer validation, flow control and exception handling
 - Data and data validation for early error recognition
 - Discovery of Protocol nodes and Protocol compatibility

Software Attributes

- Allow Stakeholders to remotely Monitor, Control and Dispatch Loads and Generation in real-time.
- Log control and dispatch events according to Market and Demand-Response Signals for settlement.
- Web "any where" access without dedicated Client Software.
- Fine grain permissible entities to partition rights to DERs and DER sites.
- Two-factored authentication to protect system access.
- Visual User Interface for ease of use.

Securing the System

Copyright Connected Energy Corp. 2003

Progress Summary

- Completed Stakeholder requirement gathering:
 - Defined Phase 1 functionalities
 - Use-Cases document distilled from Project's functionalities and Stakeholder requirements
 - 1st draft of Project's Security Policy
- Completed initial software design:
 - Version 1 of Software Design Document
 - Begin documenting Protocol requirements
- Provisioned 3 out of 4 proof-of-design sites.
- Prototype software extensions:
 - Integrated 2-factor user authentication function
 - Provisioned Internet accessible real-time monitoring for the 3 provisioned proof-of-design sites at https://doe.enerstage.com.

Next Steps

- Proof-of-Design Test Sites:
 - Provision Greater Rochester Airport
 - Provision Captione C60 60kW MTG on Catalina's
 - Implement remote Generator control.
- Software and Protocol Development:
 - Complete enerTALK protocol extension specification.
 - Complete design and implementation of dispatching demand-response and market pricing signals
- System test and validation at test sites:
 - Review security design against Security Policy
 - Exercise prototype system according to test plan.
 - Evaluate implementation with preliminary E2I ADA/DER Object Model
 - Evaluate implementation with preliminary IEEE 1547.3 Monitor Data Set
 - Compare design against alternative approaches
- Phase 2 Proposal and Phase 1 Final Report

Four (4) Proof-of-Design Sites

- State University of New York (SUNY), Farmingdale Campus, Farmingdale, NY
 - LIPA Site
- Greenpark Care Center,
 ONLINE Brooklyn, NY
 - NYSERDA Site

- Pebbly Beach Generating Station, Catalina Island, California
 - Southern California Edison Site
- Greater Rochester International Airport, Rochester, NY
 - NYSERDA Site

Aggregated View

Test Site Overview Screens

Generator Overview Screens

Copyright Connected Energy Corp. 2003

Generator Detail Screens

Web Control and Trending

Additional Functionalities

- Alarm Annunciator
- Alarm Management
- Dispatch Schedule Builder
- Role Administration
- User Administration
- Notification Administration

Contact Information

Thomas Yeh

Thomas.yeh@connectedenergy.com

Connected Energy Corp.

(585) 697 3809

4 Commercial Street

Rochester NY 14625